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We generalize the de Bruijn extension of P61ya's theorem to all characters of finitepermuta- 
tion groups and show that the de Bruijn theorem becomes a special case of our generalization 
when applied to the character of the totally symmetric representation. 

1. Introduction 

In recent years the cross-fertilization of  combinatorics and chemistry has led to 
numerous  exciting developments and applications [1-16]. Applications of  combi- 
natorics to chemical problems range from a simple enumerat ion of  isomers to more 
complex applications involving nuclear spin functions and character theory of  
finite groups. The intimate connection between combinatorics and character the- 
ory of  finite groups dates back to the work of  Frobenius, Littlewood, Foulks 
among others [17-20]. 

In 1937 P61ya [16] published a landmark paper which made significant impact  
both in mathematical  and chemical literature, among other fields including compu- 
ter science, finite automata  and Boolean algebra. It is evident that  the celebrated 
P61ya's theorem derived its motivat ion from the problem of  enumerat ing isomers 
of  organic compounds.  

Following P61ya's theorem there were several authors who have expounded 
numerous  ramifications and extensions. One such extension, originally due to de 
Bruijn [3], considers the case of two groups, one acting on the set of objects to be 
colored and the other group acting on two colors. Further  generalization of  this to 
a multi-colored problem (as opposed to the bi-colored problem) and the group act- 
ing on colors being any general group leads to the Harary-Palmer  [14] power 
group enumerat ion theorem. While P61ya's theorem has received significant atten- 
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tion in the chemical literature, chemical applications of de Bruijn's theorem or the 
Harary-Palmer  power group theorem are little explored. 

The present author  [10,21] has considered extension of  P61ya's theorem to other 
characters and their applications motivated by the works of  Williamson [22], Mer- 
ris [23], Foulks [20,24] and others. Of course, for the case of  the symmetric groups 
(Sn) this extension simply leads to the famous Schur functions which are discussed 
in depth in several books [1,17-19]. To the best of the author 's  knowledge, the 
extension of  de Bruijn's theorem to other characters is yet to be considered both in 
chemical and mathematical  literature. Yet such an extension and further ramifica- 
tions to the Harary-Palmer  power group theorem could result in significant new 
applications to spectroscopy such as NMR,  mult iple-quantum N M R  and ESR. 
The objective of  this article is to consider a new generalization of  de Bruijn's theo- 
rem to other characters. Section 2 considers the motivations and background infor- 
mation. Section 3 consists of  the statement of  the new theorem and illustrations. 

2. Pre l iminar ies  

In ordinary P61ya's theorem, one considers D as a set of  objects and R as a set 
of  colors. Let G be a permutat ion group acting on D. Two maps J] and f2 from D to 
R are said to be equivalent if there exists a g ~ G such that 

A (d) = f2(gd)Vd e O . 

For  each r ~ R assign a weight w(r) and define the weight W ( f ) ,  the weight of a 
func t ion f  : D ~ R as 

W ( f )  = I I  w ~ ( d ) ) .  
deD 

Define the cycle index Pa of the group G as 

Pa = Xl x2 . . .  , 

where x~ '~2 . . .  ~ is a cycle representation for g e  G if it generates bl cycles of  
length 1, b2 cycles of  length 2, etc., upon its action on the elements of  the set D. 
P61ya's theorem yields a generating function for the equivalence classes of  maps 
f r o m f  : D - *  Rasfol lows: 

reR 

where the arrow symbol means replace every Xk in Pc by ~ r ~ n  [w(r)] k. This is also 
sometimes referred to as the P61ya substitution. The coefficient of  a typical term 
wb~wb22.., w~" in the GF  obtained thus yields the number of non-equivalent ways of  



K. Balasubramanian / De Bruijn 's extension of  Pdlya's theorem 115 

coloring the vertices in the set D with bl colors of the first type (say white), b2 colors 
of the second type (say yellow). . . ,  bn colors of the nth type (say green). 

Consider an important modification to the ordinary cycle index Pa of the group 
G. Multiply the character x(g) with each cycle representation. Then we will have a 
different cycle index for each irreducible representation ,r with character X in the 
group G. This extension was called the generalized character cycle index (GCCI) by 
the current author [10,21]. In symbols it is defined as follows: 

PX = ~G~ge~ c x(g)x~tx~22 -. -~" , 

where X : g --~ x(g) is the character of the irreducible representation _P. The P61ya- 
like substitution in P~ yields a generating function for each irreducible representa- 
tion £.  That is 

reR 

The interpretation of GF x for characters of irreducible representations other 
than A1 (the totally symmetric representations) was given by the current author 
[21] for the first time. All functionsf  : D -+ R with the same weight W transform as 
a reducible representation in the group G. The number o f  times an irreducible repre- 
sentation 1 ~ occurs in this reducible representation is given by the coefficient o f  IV in 
GFx. Suppose IV is of the form b, b2 . .w~;,wherewl,  w2, . wn are the weights W 1 W 2 • . .  

of different types of elements in the set R. Then the coefficient of'w lb~'w2b2 . . .  w~; 
gives the number of times the irreducible representation F occurs in the set of maps 
f : D -+ R such that all maps in the set have bl elements of the first kind, b2 of the 
second kind, etc. 

This generalization of P61ya's theorem to other characters was shown by the 
author [21,10] to result in some very significant and important applications in the 
areas of spectroscopy, dynamic stereochemistry and quantum chemistry. 

3. De  Bruijn's theorem and its generalizations to other characters 

Consider a set D of objects and a set R of two different colors (say green and 
blue). Let G be a permutation group acting on D and in addition let H be a permuta- 
tion group consisting of two elements { (IB) (S), ((B 9)}. Note that H is the permuta- 
tion group of colors and hence acts on the set R of colors. The first element in H is 
the identity while the second element corresponds to exchange (transposition) of 
colors. 

Now consider all m a p s f  : D --+ R. These maps constitute a set which is denoted 
as R D. The main difference between the problems considered in section 2 and the 
present section is that an additionalgroup H acts on colors themselves. In the physi- 
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cal science area, this is sometimes referred to as color symmetry. This is diagram- 
matically illustrated in fig. 1. Suppose for convenience we denote the transposition 
of colors h. Two functionsjq and f2 are G-equivalent (as in P61ya's theorem) if there 
exists a g e G, such that 

f l ( d )  = A ( g d ) V d e D .  

Now two different equivalence classes (patterns) under the action of G become 
equivalent if there are two representatives in these patterns such that one is trans- 
formable into the other by the action ofh. In mathematical terms consider for each 
g ~ D, f ~ R n, the mapping 7g : RD -~ RD defined by 

7g( f )  = hfg,  

7g permutes R D and h e H. The de Bruijn theorem gives the number of distinct pat- 
terns (equivalence classes) under the action of both G on D and the permutation h 
onR. 

THEOREM (DE BRUIJN) 

The generating function for the equivalence classes of patterns under the action 
of both G and H is 

PG (Xk -'~ ].Zk ) , 

#k = Z w(r)w(hr) . .. w(hk-lr)  , 
taR 

hkr --- r .  

Fig. 1. Schematic illustration of map f : D ~ R and the action of G and H on the sets D and R, respec- 
tively. In the case of de Bruijn's theorem, the set R contains only two colors and the group H is com- 

posed of the identity permutation and the permutation of exchange of colors (elements of R). 
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Before we proceed to our generalization of de Bruijn's theorem to other charac- 
ters, let us illustrate the theorem with an example first. 

Consider the case of a tetrahedron. Let us color the vertices of the tetrahedron 
under the action of the To point group (G). Let R be a set of two colors say green and 
blue. The group H comprising two permutations is H = [(~)(~), ( ~ ) } .  The cycle 
index of the Td group for four vertices is 

PTd = 1 [  x4 + 6 ~ x z  + 8xax3 -I- 6x4 + 3~] .  

In order to apply de Bruijn's theorem first, we need to construct #1, /z2, etc. Since 
h = (9~B) there is no h such that hr = r for r ~ R. Hence #1 = 0. Since h2= (9~) (9~) 
= (9)(~) both green and blue colors in R are left invariant under the action of h 2. 
Hence 

#2 = Z w(r)w(hr) = 29~B. 
9,~B 

It is seen that #3 = 0 since h 3 = h. In general it can be shown that 

2(9~B) k/2 if k is even, 
#k 

t 0 if k is odd. 

Consequently, the equivalence classes under the action of both G and H is given 
by 

ec(xk-*u ) 

o r  

GF = ~ [0 4 n t- 6.02 + 8.0 + 6(292~ 2) + 3(29~B) 2] = 92~B 2 . 

This means there is only one pattern which contains two green colors and two 
blue colors such that it remains invariant under the action of both G and H 
groups. 

As yet another example, we consider the coloring of faces of the cube illustrated 
by Krishnamurthy [1 ]. The cycle index for the rotational subgroup O is given by 

Po = ~ [x 6 + 2x~lx4 + 3x~lx~2 + 8x~3 + 6x~2] • 

For this case replacing every xk by #k yields 

± [ 6 ( 2 ~ )  3] = 293~ 3 
24 

The two patterns are shown in fig. 2. 
We now consider the generalization of de Bruijn's theorem to other characters. 

Consider the GCCI of the group G corresponding to the irreducible representation 
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Fig. 2. I n v a r i a n t  pa t te rns  for co lor ing  the faces of  a cube  unde r  the ac t ion  of  bo th  G and  H .  

/" with character X : g --* x ( g )  denoted by P~. We have already defined this in sec- 
tion 2. Let R be a set of two colors (say green and blue). Let H be the group of per- 
mutation of colors composed of H ={(9) (~) ,  (9~)}. Let us also denote the 
permutation (S:B) by h. 

T H E O R E M  

The GF~ obtained by the following substitution yields the generating function 
for the transformation o fmap s f  : D -~ R under the irreducible representation F, 

GF~ = P ~ ( x k  "-~ #k)  . 

In the above substitution #k is obtained the same way as in the ordinary de Bruijn's 
theorem. 

Let us illustrate this important extension of de Bruijn's theorem to other charac- 
ters with an example. Consider the same problem of coloring the vertices of a tetra- 
hedron with two different colors say green and blue (9, N). The Td point group is 
also isomorphic to the S4 group comprising 24 permutations of four objects. The 
relevant cycle indices of the five irreducible representations of the Td(S4) group are 
shown below, where we use the standard [P(n)], notation to denote the irreducible 
representations of S4, P ( n ) b e i n g t h e p a r t i t i o n o f a n i n t e g e r n ,  

pA, = p[41 = 1 [x 4 + 6x~lx2 + 8x3 + 6x4 + 3~1, 

pT1 ___.___ p[31] __-- 2"41 [3x14 + 6~x2 - 6x4  - 3x~2 ] , 

pE = pie 2] 1 4 6~] = N [2x 1 - 8 X l  x 3  -t- , 

pV2 = p[212] I [3x 4 _ 6x~lx2 + 6x4 3 ~ ]  
----- 2"--4 - -  , 

pA2 = p[l'l = ~4[x 4 _ 6~x2 + 8xlx3  - 6x4 q- 3~1. 
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The #k quantities are defined the same way as in de Bruijn's theorem for this pro- 
blem since we consider only the totally symmetric representation of the H group 
consisting of two permutations. Application of our theorem to the A1 representa- 
tion (Xk ---* #k) yields 

GF~ l = ~ 2 ~ B 2  

Note that this is identical to de Bruijn's theorem. Hence our theorem becomes 
de Bruijn's theorem for the totally symmetric A1 representation. Let us now apply 
this to the T1 representation 

OFT' = ~4 [3.0 4 q- 6" 0 2. ( 2 ~ )  -- 6(2~2~B 2) - 3(2~B) 2] = - ~ 2 ~ B 2 .  

The OF~ ~ suggests that there is one A1 representation which contains two 
greens and two blues such that it remains invariant under the switching of blue to 
green and green to blue. The OFF', on the other hand, suggests the same thing but 
in addition due to the negative sign, the symmetry adapted combination of func- 
tions which contain two greens and two blues that transforms as the T1 representa- 
tion changes sign under the exchange of colors (blue--* green and green--* blue). 
Let us consider GF~ 

GF~ = GF~ 221 = 1 [2-0 4 - -  8" 0" 0 --}- 6(2~N)2] = ~ 2 ~ 2 ,  

OF T2 = ~ [ 3 - 0 4 - 6 - 0 2 .  (29~B) +6(2S2~ 2) - 3 ( 2 ~ )  21 = 0 ,  

GF~2 1 [0 4 _ 6-0  2 ( 2 ~ )  + 8(0)(0) - 6(2S2~B 2) + 3(2S~) 2] = 0 

The above generating functions evidently suggest that among all functions 
which transform as the E representation only that which contains two greens and 
two blues is invariant to interchange of colors. Note that none of the functions in 
R D which transform as T2 and A2 representations is invariant to interchange of col- 
ors as implied by GF T2 and GF~ 2 . 

4. Conclus ion  

Here we considered a generalization of de Bruijn's theorem to all characters of 
any finite permutation group. A physical interpretation for the generalization was 
also given. This important generalization can lead to several more powerful theo- 
rems. For example, the generalization of the Harary-Palmer power group enu- 
meration theorem to other characters is a very important development• Likewise, 
one could consider other irreducible representations of the group H as well. It is not 
clear to the author at this time what this generalization of the Harary-Palmer 
power group theorem to the other characters of the group H would lead to in terms 
of physical applications. It is, however, evident that the present extension of de 
Bruijn's theorem to other irreducible representations will have important applica- 
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tions to NMR, ESR and multiple-quantum NMR spectroscopies. Such applica- 
tions will be the topic of future studies. 
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